首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3153篇
  免费   310篇
  国内免费   526篇
  2024年   4篇
  2023年   64篇
  2022年   83篇
  2021年   118篇
  2020年   134篇
  2019年   158篇
  2018年   124篇
  2017年   103篇
  2016年   120篇
  2015年   109篇
  2014年   181篇
  2013年   248篇
  2012年   150篇
  2011年   184篇
  2010年   132篇
  2009年   171篇
  2008年   182篇
  2007年   213篇
  2006年   168篇
  2005年   168篇
  2004年   124篇
  2003年   109篇
  2002年   103篇
  2001年   71篇
  2000年   77篇
  1999年   68篇
  1998年   59篇
  1997年   54篇
  1996年   44篇
  1995年   51篇
  1994年   42篇
  1993年   28篇
  1992年   32篇
  1991年   36篇
  1990年   28篇
  1989年   25篇
  1988年   21篇
  1987年   19篇
  1986年   17篇
  1985年   28篇
  1984年   15篇
  1983年   24篇
  1982年   19篇
  1981年   17篇
  1980年   11篇
  1979年   18篇
  1978年   14篇
  1977年   9篇
  1975年   4篇
  1974年   5篇
排序方式: 共有3989条查询结果,搜索用时 31 毫秒
41.
pH control is critical in bioreactor operations, typically realized through a two-sided control loop, where CO2 sparging and base addition are used in bicarbonate-buffered media. Though a common approach, base addition could compromise culture performance due to the potential impact from pH excursions and osmolality increase in large-scale bioreactors. In this study, the feasibility of utilizing control of sparge gas composition as part of the pH control loop was assessed in Chinese hamster ovary (CHO) fed-batch cultures. Fine pH control was evaluated in multiple processes at different setpoints in small-scale ambr®250 bioreactors. Desired culture pH setpoints were successfully maintained via air sparge feedback control. As part of the pH control loop, air sparging was increased to improve CO2 removal automatically, hence increase culture pH, and vice versa. The effectiveness of this pH control strategy was seamlessly transferred from ambr®250 to 200 L scale, demonstrating scalability of the proposed methodology. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2743, 2019  相似文献   
42.
Single-use technologies, in particular disposable bioreactor bags, have become integral within the biopharmaceutical community. However, safety concerns arose upon the identification of toxic leachable compounds derived from the plastic materials. Although the leachable bis(2,4-di-tert-butylphenyl)-phosphate (bDtBPP) has been previously shown to inhibit CHO cell growth, it is critical to determine if other compounds like this are still present in subsequent generations of films for industrial application. This study compares the performance of CHO cells, CHO-K1, and CHO-DP12, cultured in media conditioned in an older single-use bioreactor (SUB) film (F-1) and a newer generation film (F-2) from the same vendor. CHO cells cultured in media conditioned for 7 days in the F-1 film demonstrated significantly reduced growth and antibody productivity profiles when compared to controls and media conditioned for the same time period in the newer F-2 film. Proteomic profiling of CHO cells cultured in the F-1 conditioned media identified differentially expressed proteins involved in oxidative stress response as well as compromised ATP synthesis. These potentially metabolically compromised cells exhibited reduced oxidative phosphorylation activity as well as lower glycolytic metabolism, characteristic of slower growing cells. Nonvolatile and metal leachables analysis of film extracts by LC–MS revealed a reduction in the abundance of the analyzed leachates from F-2 films when compared to F-1 films including bDtBPP, potentially explaining improved CHO cell growth in F-2 conditioned media. Furthermore, in vitro endocrine disruptor testing of the known leachable revealed this molecule to possess the potential to act as an androgen antagonist. This study demonstrates an improvement in the materials composition used in modern generations of SUBs for safe application in the bioprocess.  相似文献   
43.
Podoplanin (PDPN) is known as a lymphatic endothelial cell marker. Monoclonal antibodies (mAbs) against human, mouse, rat, rabbit, dog, cat, bovine, pig, and horse PDPN have been established in our previous studies. However, mAbs against alpaca PDPN (aPDPN), required for immunohistochemical analysis, remain to be developed. In the present study, we employed the Cell-Based Immunization and Screening (CBIS) method for producing anti-aPDPN mAbs. We immunized mice with aPDPN-overexpressing Chinese hamster ovary (CHO)-K1 cells (CHO/aPDPN), and hybridomas producing mAbs against aPDPN were screened using flow cytometry. One of the mAbs, PMab-225 (IgG2b, kappa), specifically detected CHO/aPDPN cells via flow cytometry and recognized the aPDPN protein on Western blotting. Further, PMab-225 strongly stained lung type I alveolar cells, colon lymphatic endothelial cells, and kidney podocytes via immunohistochemistry. These findings demonstrate that PMab-225 antibody is useful to investigate the function of aPDPN via different techniques.  相似文献   
44.
白清泉  左凌仁 《动物学杂志》2022,57(5):667,677,688-156
近年来,随着观鸟活动和鸟类科研工作在辽宁的持续开展(Baietal.2015,汤姆·滨客2016),辽宁各地不断发现鸟种分布新记录种(白清泉等2019)。2012至2020年间,在丹东、大连、抚顺等市先后发现小鸦鹃(Centropus bengalensis)、雪鹀(Plectrophenax nivalis)、红翅凤头鹃(Clamator coromandus)、宝兴歌鸫(Turdus mupinensis)和黄眉姬鹟(Ficedula narcissina)5种,经查阅相关资料(邱英杰等2006,郑光美2017),确定为辽宁省鸟类分布新记录种。  相似文献   
45.
谷欣哲  方芳 《微生物学通报》2022,49(9):3740-3752
【背景】异戊醇是酵母菌在白酒发酵过程中通过氨基酸合成代谢途径和氨基酸分解代谢途径合成的主要高级醇,其含量影响白酒饮用的舒适度。目的分析和比较分离自浓香型白酒酒醅中的酵母菌合成异戊醇的能力,揭示酵母菌合成异戊醇的途径。方法从酒醅中分离具有异戊醇合成能力的酵母菌株,比较不同生长时期酵母菌合成异戊醇的能力,通过前体物代谢分析它们合成异戊醇的途径。结果分离自酒醅的5株酵母的异戊醇合成能力从强到弱依次为Naumovozyma castellii JP3-1、Saccharomyces cerevisiae JP3、Pichia fermentans JP22、Pichia kudriavzevii JP1和Naumovozyma dairenensis CBS421。这些酵母合成异戊醇的时期主要在对数生长期,N. castellii JP3-1、P. fermentans JP22和N. dairenensis CBS421在稳定生长期也合成异戊醇。S. cerevisiae JP3、N. castellii JP3-1和N. dairenensis CBS421在整个生长时期主要通过Harris途径合成异戊醇;P. kudriavzevii JP1在整个时期主要通过Ehrlich途径合成异戊醇;P. fermentans JP22在对数生长期通过Harris途径和Ehrlich途径合成异戊醇的能力接近,在稳定生长期主要通过Harris途径合成异戊醇。结论本研究揭示了酒醅来源5个属种酵母合成异戊醇的途径、能力与其生长时期的关系,研究结果可为解析浓香型白酒发酵过程异戊醇合成、积累机制及实施白酒发酵过程异戊醇合成的精准调控提供理论依据。  相似文献   
46.
《遗传学报》2022,49(11):1053-1063
The domestication and artificial selection of wild boars have led to dramatic morphological and behavioral changes, especially in East Chinese (ECN) pigs. Here, we provide insights into the population structure and current genetic diversity of representative ECN pig breeds. We identify a 500-kb region containing six tooth development-relevant genes with almost completely different haplotypes between ECN pigs and Chinese wild boars or European domestic pigs. Notably, the c.195A>G missense mutation in exon 2 of AMBN may cause alterations in its protein structure associated with tusk degradation in ECN pigs. In addition, ESR1 may play an important role in the reproductive performance of ECN pigs. A major haplotype of the large lop ear-related MSRB3 gene and eight alleles in the deafness-related GRM7 gene may affect ear morphology and hearing in ECN pigs. Interestingly, we find that the two-end black (TEB) coat color in Jinhua pigs is most likely caused by EDNRB with genetic mechanisms different from other Chinese TEB pigs. This study identifies key loci that may be artificially selected in Chinese native pigs related to the tusk, coat color, and ear morphology, thus providing new insights into the genetic mechanisms of domesticated pigs.  相似文献   
47.
为评价4种种子处理剂对菜心种子的安全性以及对黄曲条跳甲Phyllotreta striolata (Fabricius)的防治效果和保苗作用,本研究开展了室内、田间安全性试验以及田间保护试验。室内安全性试验结果显示,40%溴酰·噻虫嗪种子处理悬浮剂、600 g/L吡虫啉悬浮种衣剂、18%噻虫胺种子处理悬浮剂、54%吡虫·氟虫腈悬浮种衣剂用量分别低于5 120、9 600、2 880、7 040 g(a.i.)/100 kg种子时,对菜心种子发芽和生长无影响。田间安全性及保护作用结果显示,40%溴酰·噻虫嗪种子处理悬浮剂和54%吡虫·氟虫腈悬浮种衣剂保护作用显著,菜心出苗后25 d的株高和鲜重与对照组相比均有增加,且差异显著。结果表明40%溴酰·噻虫嗪种子处理悬浮剂和54%吡虫·氟虫腈悬浮种衣剂对菜心种子具有较好的安全性,且对菜心苗期有良好的保护作用。  相似文献   
48.
49.
Mycoplasma contamination events in biomanufacturing facilities can result in loss of production and costly cleanups. Mycoplasma may survive in mammalian cell cultures with only subtle changes to the culture and may penetrate the 0.2 µm filters often used in the primary clarification of harvested cell culture fluid. Culture cell-based and indicator cell-based assays that are used to detect mycoplasma are highly sensitive but can take up to 28 days to complete and cannot be used for real-time decision making during the biomanufacturing process. To support real-time measurements of mycoplasma contamination, there is a push to explore nucleic acid testing. However, cell-based methods measure growth or colony forming units and nucleic acid testing measures genome copy number; this has led to ambiguity regarding how to compare the sensitivity of the methods. In addition, the high risk of conducting experiments wherein one deliberately spikes mycoplasma into bioreactors has dissuaded commercial groups from performing studies to explore the multiple variables associated with the upstream effects of a mycoplasma contamination in a manufacturing setting. Here we studied the ability of Mycoplasma arginini to persist in a single-use, perfusion rocking bioreactor system containing a Chinese hamster ovary (CHO) DG44 cell line expressing a model monoclonal immunoglobulin G1 (IgG1) antibody. We examined M. arginini growth and detection by culture methods, as well as the effects of M. arginini on mammalian cell health, metabolism, and productivity. We compared process parameters and controls normally measured in bioreactors including dissolved oxygen, gas mix, and base addition to maintain pH, to examine parameter changes as potential indicators of contamination. Our work showed that M. arginini affects CHO cell growth profile, viability, nutrient consumption, oxygen use, and waste production at varying timepoints after M. arginini introduction to the culture. Importantly, how the M. arginini contamination impacts the CHO cells is influenced by the concentration of CHO cells and rate of perfusion at the time of M. arginini spike. Careful evaluation of dissolved oxygen, pH control parameters, ammonia, and arginine over time may be used to indicate mycoplasma contamination in CHO cell cultures in a bioreactor before a read-out from a traditional method.  相似文献   
50.
In this study, we report an investigation of a panel of clonally-derived Chinese hamster ovary (CHO) cell lines exhibiting variability in the proportion of full-length IgG4 Fc-fusion protein produced. The recombinant protein was found to be degraded during cell culture into four shorter “clipped” species (three of the four cleavage sites occurred at arginine residues) and preliminary analyses suggested that a host cell enzyme was responsible for proteolysis. To identify the specific enzyme responsible, RNA sequencing was used to identify gene expression differences between the cell lines with a “high” and “low” clipping phenotype. From this analysis, six protease-encoding genes were found to be significantly upregulated in those cell lines yielding the lowest proportion of full-length IgG4 Fc-fusion protein. Four of these protease candidates were deprioritized after examination of their cleavage site specificity. The remaining enzymes, Adam19 and Furin, were found to be capable of cleavage at arginine residues, and inhibitors for both proteases were added to cell-free media to determine if the product degradation could be reduced. While the Adam19 inhibitor had no impact, Furin inhibitor I (specific for the proprotein convertase family of enzymes) was found to result in a 33–39% increase in complete IgG4 Fc-fusion protein when compared with untreated samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号